Using Temporal-Difference Reinforcement Learning to Improve Decision-Theoretic Utilities for Diagnosis
نویسندگان
چکیده
Probability theory represents and manipulates uncertainties, but cannot tell us how to behave. For that we need utility theory which assigns values to the usefulness of different states, and decision theory which concerns optimal rational decisions. There are many methods for probability modeling, but few for learning utility and decision models. We use reinforcement learning to find the optimal sequence of questions in a diagnosis situation while maintaining a high accuracy. Automated diagnosis on a heart-disease domain is used to demonstrate that temporal-difference learning can improve diagnosis. On the Cleveland heart-disease database our results are better than those reported from all previous methods.
منابع مشابه
Learning Decision Theoretic Utilities through Reinforcement Learning
Probability models can be used to predict outcomes and compensate for missing data, but even a perfect model cannot be used to make decisions unless the utility of the outcomes, or preferences between them, are also provided. This arises in many real-world problems, such as medical diagnosis, where the cost of the test as well as the expected improvement in the outcome must be considered. Relat...
متن کاملReinforcement Learning in Distributed Domains: An Inverse Game Theoretic Approach
We consider the design of multi-agent systems (MAS) so as to optimize an overall world utility function when each agent in the system runs a Reinforcement Learning (RL) algorithm based on own its private utility function. Traditional game theory deals with the "forward problem" of determining the state of a MAS that will ensue from a specified set of private utilities of the individual agents. ...
متن کاملDecision-Theoretic Simulated Annealing
The choice of a good annealing schedule is necessary for good performance of simulated annealing for combinatorial optimization problems. In this paper, we pose the simulated annealing task decision-theoretically for the first time, allowing the user to explicitly define utilities of time and solution quality. We then demonstrate the application of reinforcement learning techniques towards appr...
متن کاملMapReduce for Parallel Reinforcement Learning
We investigate the parallelization of reinforcement learning algorithms using MapReduce, a popular parallel computing framework. We present parallel versions of several dynamic programming algorithms, including policy evaluation, policy iteration, and off-policy updates. Furthermore, we design parallel reinforcement learning algorithms to deal with large scale problems using linear function app...
متن کاملApplying reinforcement learning towards automating resource allocation and application scalability in the cloud
Public Infrastructure as a Service (IaaS) clouds such as Amazon, GoGrid and Rackspace deliver computational resources by means of virtualisation technologies. These technologies allow multiple independent virtual machines to reside in apparent isolation on the same physical host. Dynamically scaling applications running on IaaS clouds can lead to varied and unpredictable results because of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995